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Abstract 

Synthetic atria are increasingly used in in silico studies 

of atrial fibrillation (AF). However, existing models 

frequently rely on randomly assigned fibrosis maps, 

capturing only one facet of arrhythmogenicity and 

neglecting the interplay between geometry and other 

elements of negative remodelling that define atrial 

cardiomyopathy. We propose a novel statistical shape and 

appearance model (SSAM) of the left atrium, using charge 

density mapping data from 49 patients with persistent AF. 

Our findings show that local anatomical features correlate 

with CV. By jointly modelling shape and CV, our SSAM 

has the potential of generating synthetic atria that encode 

the coupled remodelling processes characteristic of AF, 

enabling large-scale in silico investigations. 

 

 

1. Introduction 

In silico studies of AF are increasingly being used to 

understand arrhythmia mechanisms and assess therapies. 

However, generating realistic and functionally meaningful 

synthetic atria remains a major challenge. 

Synthetic patient approaches benefit from the relative 

ease of generating large datasets, for example for machine 

learning applications, avoiding the time-consuming 

segmentation of individual images required when using 

real patients [1]. Statistical shape models (SSMs) are a 

powerful approach to capture anatomical variability across 

patient populations and have been successfully applied in 

the generation of realistic atrial geometries [1]. In the 

context of AF, fibrosis has subsequently been used to 

inform the arrhythmogenic substrate, assigning random or 

probabilistically guided fibrosis patterns to the generated 

geometries [2,3].  

However, this method has key limitations. Firstly, not 

all AF patients exhibit significant fibrotic remodelling, 

with 64% of patients in the ERASE-AF study having no 

low voltage areas [4]. Secondly, it models fibrosis 

independently of atrial geometry, despite both being 

components of the negative remodelling that defines atrial 

cardiomyopathy [5]. There is evidence they are 

interconnected, with left atrial diameter differing 

significantly between groups stratified by the extent of 

low-voltage areas in a cohort of ~1,500 patients [6]. 

Ignoring this relationship may lead to the creation of non-

physiological synthetic atria, thus compromising the 

validity of findings from in silico studies. 

Unlike fibrosis, conduction velocity (CV) implicitly 

reflects multiple underlying structural and functional 

mechanisms of arrhythmogenesis, including tissue 

anisotropy, interstitial fibrosis, and ion channel 

remodelling [7]. It is known to influence re-entry 

dynamics, and is linked to AF burden, disease progression, 

and recurrence post-pulmonary vein (PV) isolation [8]. Yet 

CV mapping requires invasive intracardiac catheterisation, 

limiting its availability to specialised centres and a small 

subset of patients. This poses a major barrier to generating 

large populations of real patients. 

In this study, we aimed to develop a statistical shape and 

appearance model (SSAM) of the left atrium (LA) that 

integrates real-world CV data, providing a powerful tool 

for generating synthetic atria. By capturing the 

interconnected nature of anatomical and functional 

remodelling in AF, and by using CV as a more nuanced 

determinant of the AF substrate, our SSAM has the 

potential to improve the physiological fidelity of large-

scale in silico studies of AF. 

 

2. Methods 

2.1. Data Acquisition 

Data were obtained from 49 patients with persistent AF 

enrolled in the DISCOVER registry (NCT03893331). 

Patient characteristics are summarised in Table 1.  

All patients underwent first-time catheter ablation 

guided by charge density mapping using the AcQMap 

system (Acutus Medical, CA, USA) [8]. A 20-second 

recording of either presenting or induced AF, acquired 

prior to any ablation, was used to compute CV at each 

mesh vertex across multiple wavefronts, with the median 

value per vertex retained. 
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Table 1. Patient characteristics. 

Characteristics Distribution 

Age, years, mean ± SD 61 ± 12 

Sex, n (%) 

     Male 

     Female 

 

43 (80) 

11 (20) 

BMI (kg/m2), mean ± SD  30 ± 5 

CHA2DS2-VASc score, median (IQR) 1.5 (0 – 3) 

Time from AF diagnosis, months, 

median (IQR) 
29 (15 – 38) 

AF mapped, n (%) 

     Spontaneous 

     Induced 

 

41 (76) 

13 (24) 

 

2.2. SSM 

LA anatomies were reconstructed using intra-chamber 

ultrasound. These geometries have previously been shown 

to compare favourably with magnetic resonance imaging 

[9]. PVs and the mitral valve were excluded to standardise 

anatomy. Meshes were downsampled to 4,500 vertices and 

processed using the particle-based shape modelling 

workflow in ShapeWorks 6.4 [10]. A set of 576 

correspondences was computed per subject, and their 3D 

coordinates exported for further analysis in MATLAB 

R2022b (MathWorks, MA, USA). Principal Component 

Analysis (PCA) was applied to the concatenated 

coordinates to extract modes of anatomical variation. 

 

2.3. Statistical Appearance Model (SAM) 

CV values were assigned to each correspondence using 

a nearest neighbour algorithm based on the nearest mesh 

vertex, generating a CV appearance vector per subject 

[𝑎1, 𝑎2, … , 𝑎576]. PCA was applied to these vectors to 

identify dominant patterns in CV distribution. Spearman 

correlations between shape and CV modes were computed 

to assess structure-function relationships. 

 

2.4. SSAM 

To integrate anatomical and functional variability, an 

SSAM was constructed. Each subject was represented by a 

combined vector: [𝑥1, 𝑦1, 𝑧1, 𝑎1, … , 𝑥576, 𝑦576, 𝑧576, 𝑎576]. 

Prior to PCA, CV values were normalised using the IQR to 

ensure comparability with spatial coordinates. 

Subsequently, PCA modes captured the joint variation in 

shape and CV. 

For each mode 𝑖, the relative contributions of shape and 

CV were quantified as: 

• 𝑆ℎ𝑎𝑝𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑃𝐶𝑖) =  
∑ |𝑠ℎ𝑎𝑝𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠|

∑ |𝑎𝑙𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠|
  

• 𝐶𝑉 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑃𝐶𝑖) =  
∑ |𝐶𝑉 𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠|

∑ |𝑎𝑙𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠|
 

 

3. Results 

3.1. Model Variance Explanation 

 Figure 1 shows cumulative variance by mode for each 

model. To reach 95% variance, 20, 22, and 27 modes were 

needed for our SSM, SAM, and SSAM, respectively. 

Explained variance for each mode is depicted in Figures 2 

(SSM and SAM) and 3 (SSAM). 

SSM mode 1 primarily captured LA volume. 

Subsequent modes (2, 3, and 4) represented different 

combinations of atrial width, anteroposterior (AP) 

diameter, and varying degrees of posterior wall protrusion 

or concavity.  

SAM mode 1 represented global CV, with subsequent 

modes highlighting spatial patterns, such as anterior–

posterior differences and PV ostial conduction. 

Figure 1. Cumulative variance covered for different 

numbers of modes for all models. 

 

Figure 2. Correlation matrix between shape and 

appearance modes (main plot). Explained variance for 

individual shape and appearance modes are shown in the 

left and bottom subplots, respectively. 
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3.2. Relationship Between Shape and CV 

Shape mode 3 showed a moderate correlation with 

appearance mode 8 (ρ = 0.48; Figure 2). This combination 

was characterised by reduced CV on the posterior wall, 

especially near the left inferior PV, when the posterior wall 

was more concave, and reduced inferior wall and roof CV 

with a smaller AP diameter (Figure 4). Several other 

weaker correlations between shape and appearance modes 

were also observed. 

 

3.3. SSAM 

Figure 3 illustrates the relative contributions of shape 

and CV to each SSAM mode, while Figure 5 visualises 

variation along the first four modes. 

Mode 1 was shape-dominant, mirroring SSM Mode 1 

(LA volume). Larger atria tended to exhibit slower CV, 

particularly on the anterior wall. Mode 2 was equal parts 

CV and shape-driven, reflecting global CV slowing 

(similar to SAM mode 1), in larger atria with a less 

prominent left atrial appendage. Modes 3 and 4 captured 

the interplay between shape and CV seen in earlier 

analyses, recapitulating associations such as a concave 

posterior wall with slower local CV, and reduced AP 

diameter with slower conduction on the inferior wall.  

4. Discussion and Conclusion 

In this study, we developed and analysed an SSAM of 

the LA that integrates anatomical and CV variability in 

persistent AF. Our results highlight the interdependence of 

structural and functional remodelling, demonstrating that 

combining shape and CV data offers deeper insight into AF 

substrate heterogeneity than analysing either alone. 

 

4.1. Key Anatomical Features and AF 

Dynamics 

As expected, larger LA volumes were associated with a 

greater spatial extent of slow CV. However, our novel, 

spatially resolved analyses also revealed that local shape 

features influenced CV distribution.  

Increased concavity, in regions such as the posterior 

wall, corresponded with locally reduced CV. 

Mechanistically, this may reflect geometric constraints or 

external compression from adjacent structures, potentially 

promoting tissue remodelling [11,12]. Additionally, local 

curvature could alter fibre orientation or myocardial 

thickness, influencing CV. 

 

4.2. Utility of SSAM for Virtual 

Populations 

A key motivation for this work is the growing demand 

for synthetic, yet physiologically informed, virtual patient 

populations. By jointly modelling shape and CV as modes 

of variation, our SSAM enables the generation of synthetic 

LA that more faithfully capture the coupled structural and 

functional remodelling characteristic of AF. This feature 

addresses a central limitation in existing synthetic models, 

which frequently impose fibrosis patterns without 

considering their anatomical context. Moreover, CV may 

be a more sensitive indicator of arrhythmogenic substrate 

than fibrosis alone.   

Figure 4. Variation in modes, showing ±2 standard deviations from the mean. Left: shape mode 3, with distance from 

mean shape (light grey); right: appearance mode 8, with conduction velocity distributions depicted on mean shape. MV: 

mitral valve. 

 

Figure 3. Relative contributions of shape and CV to 

statistical shape and appearance model modes (blue). 

Explained variance for individual modes (red). 
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Figure 5. Variation in first 4 Statistical Shape and Appearance Model modes, showing ±2 standard deviations from the 

mean. MV: mitral valve. 
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