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Abstract

Synthetic atria are increasingly used in in silico studies
of atrial fibrillation (AF). However, existing models
frequently rely on randomly assigned fibrosis maps,
capturing only one facet of arrhythmogenicity and
neglecting the interplay between geometry and other
elements of negative remodelling that define atrial
cardiomyopathy. We propose a novel statistical shape and
appearance model (SSAM) of the left atrium, using charge
density mapping data from 49 patients with persistent AF.
Our findings show that local anatomical features correlate
with CV. By jointly modelling shape and CV, our SSAM
has the potential of generating synthetic atria that encode
the coupled remodelling processes characteristic of AF,
enabling large-scale in silico investigations.

1. Introduction

In silico studies of AF are increasingly being used to
understand arrhythmia mechanisms and assess therapies.
However, generating realistic and functionally meaningful
synthetic atria remains a major challenge.

Synthetic patient approaches benefit from the relative
ease of generating large datasets, for example for machine
learning applications, avoiding the time-consuming
segmentation of individual images required when using
real patients [1]. Statistical shape models (SSMs) are a
powerful approach to capture anatomical variability across
patient populations and have been successfully applied in
the generation of realistic atrial geometries [1]. In the
context of AF, fibrosis has subsequently been used to
inform the arrhythmogenic substrate, assigning random or
probabilistically guided fibrosis patterns to the generated
geometries [2,3].

However, this method has key limitations. Firstly, not
all AF patients exhibit significant fibrotic remodelling,
with 64% of patients in the ERASE-AF study having no
low voltage areas [4]. Secondly, it models fibrosis
independently of atrial geometry, despite both being
components of the negative remodelling that defines atrial
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cardiomyopathy [5]. There 1is evidence they are
interconnected, with left atrial diameter differing
significantly between groups stratified by the extent of
low-voltage areas in a cohort of ~1,500 patients [6].
Ignoring this relationship may lead to the creation of non-
physiological synthetic atria, thus compromising the
validity of findings from in silico studies.

Unlike fibrosis, conduction velocity (CV) implicitly
reflects multiple underlying structural and functional
mechanisms of arrhythmogenesis, including tissue
anisotropy, interstitial fibrosis, and ion channel
remodelling [7]. It is known to influence re-entry
dynamics, and is linked to AF burden, disease progression,
and recurrence post-pulmonary vein (PV) isolation [8]. Yet
CV mapping requires invasive intracardiac catheterisation,
limiting its availability to specialised centres and a small
subset of patients. This poses a major barrier to generating
large populations of real patients.

In this study, we aimed to develop a statistical shape and
appearance model (SSAM) of the left atrium (LA) that
integrates real-world CV data, providing a powerful tool
for generating synthetic atria. By capturing the
interconnected nature of anatomical and functional
remodelling in AF, and by using CV as a more nuanced
determinant of the AF substrate, our SSAM has the
potential to improve the physiological fidelity of large-
scale in silico studies of AF.

2. Methods

2.1. Data Acquisition

Data were obtained from 49 patients with persistent AF
enrolled in the DISCOVER registry (NCT03893331).
Patient characteristics are summarised in Table 1.

All patients underwent first-time catheter ablation
guided by charge density mapping using the AcQMap
system (Acutus Medical, CA, USA) [8]. A 20-second
recording of either presenting or induced AF, acquired
prior to any ablation, was used to compute CV at each
mesh vertex across multiple wavefronts, with the median
value per vertex retained.

Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.117



Table 1. Patient characteristics.

Characteristics Distribution
Age, years, mean + SD 61+12
Sex, n (%)
Male 43 (80)
Female 11 (20)
BMI (kg/m?), mean + SD 30+5
CHA,DS»-VASc score, median (IQR) 1.5(0-3)
Time from AF diagnosis, months,
median (IQR) 29 (15-38)
AF mapped, n (%)
Spontaneous 41 (76)
Induced 13 (24)
2.2. SSM

LA anatomies were reconstructed using intra-chamber
ultrasound. These geometries have previously been shown
to compare favourably with magnetic resonance imaging
[9]. PVs and the mitral valve were excluded to standardise
anatomy. Meshes were downsampled to 4,500 vertices and
processed using the particle-based shape modelling
workflow in ShapeWorks 6.4 [10]. A set of 576
correspondences was computed per subject, and their 3D
coordinates exported for further analysis in MATLAB
R2022b (MathWorks, MA, USA). Principal Component
Analysis (PCA) was applied to the -concatenated
coordinates to extract modes of anatomical variation.

2.3.  Statistical Appearance Model (SAM)

CV values were assigned to each correspondence using
a nearest neighbour algorithm based on the nearest mesh
vertex, generating a CV appearance vector per subject
[a, ay, ..., as76]. PCA was applied to these vectors to
identify dominant patterns in CV distribution. Spearman
correlations between shape and CV modes were computed
to assess structure-function relationships.

24. SSAM

To integrate anatomical and functional variability, an
SSAM was constructed. Each subject was represented by a
combined vector: [X;, V1,21, A1, - X576, V5765 Z576) A576]-
Prior to PCA, CV values were normalised using the IQR to
ensure  comparability  with  spatial  coordinates.
Subsequently, PCA modes captured the joint variation in
shape and CV.

For each mode i, the relative contributions of shape and
CV were quantified as:

. Shape contribution (PC;) = > 1ol loadings]

Y. |CV loadings|
Y lall loadings]|

Y. |shape loadings|

. CV contribution (PC;) =

3. Results

3.1. Model Variance Explanation

Figure 1 shows cumulative variance by mode for each
model. To reach 95% variance, 20, 22, and 27 modes were
needed for our SSM, SAM, and SSAM, respectively.
Explained variance for each mode is depicted in Figures 2
(SSM and SAM) and 3 (SSAM).
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Figure 1. Cumulative variance covered for different
numbers of modes for all models.

SSM mode 1 primarily captured LA volume.
Subsequent modes (2, 3, and 4) represented different
combinations of atrial width, anteroposterior (AP)
diameter, and varying degrees of posterior wall protrusion
or concavity.

SAM mode 1 represented global CV, with subsequent
modes highlighting spatial patterns, such as anterior—
posterior differences and PV ostial conduction.
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Figure 2. Correlation matrix between shape and
appearance modes (main plot). Explained variance for
individual shape and appearance modes are shown in the
left and bottom subplots, respectively.
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Figure 3. Relative contributions of shape and CV to
statistical shape and appearance model modes (blue).
Explained variance for individual modes (red).

3.2. Relationship Between Shape and CV

Shape mode 3 showed a moderate correlation with
appearance mode 8 (p = 0.48; Figure 2). This combination
was characterised by reduced CV on the posterior wall,
especially near the left inferior PV, when the posterior wall
was more concave, and reduced inferior wall and roof CV
with a smaller AP diameter (Figure 4). Several other
weaker correlations between shape and appearance modes
were also observed.

3.3. SSAM

Figure 3 illustrates the relative contributions of shape
and CV to each SSAM mode, while Figure 5 visualises
variation along the first four modes.

Mode 1 was shape-dominant, mirroring SSM Mode 1
(LA volume). Larger atria tended to exhibit slower CV,
particularly on the anterior wall. Mode 2 was equal parts
CV and shape-driven, reflecting global CV slowing
(similar to SAM mode 1), in larger atria with a less
prominent left atrial appendage. Modes 3 and 4 captured
the interplay between shape and CV seen in earlier
analyses, recapitulating associations such as a concave
posterior wall with slower local CV, and reduced AP
diameter with slower conduction on the inferior wall.

4. Discussion and Conclusion

In this study, we developed and analysed an SSAM of
the LA that integrates anatomical and CV variability in
persistent AF. Our results highlight the interdependence of
structural and functional remodelling, demonstrating that
combining shape and CV data offers deeper insight into AF
substrate heterogeneity than analysing either alone.

4.1. Key Anatomical Features and AF
Dynamics

As expected, larger LA volumes were associated with a
greater spatial extent of slow CV. However, our novel,
spatially resolved analyses also revealed that local shape
features influenced CV distribution.

Increased concavity, in regions such as the posterior
wall, corresponded with locally reduced CV.
Mechanistically, this may reflect geometric constraints or
external compression from adjacent structures, potentially
promoting tissue remodelling [11,12]. Additionally, local
curvature could alter fibre orientation or myocardial
thickness, influencing CV.

4.2. Utility of SSAM for Virtual

Populations

A key motivation for this work is the growing demand
for synthetic, yet physiologically informed, virtual patient
populations. By jointly modelling shape and CV as modes
of variation, our SSAM enables the generation of synthetic
LA that more faithfully capture the coupled structural and
functional remodelling characteristic of AF. This feature
addresses a central limitation in existing synthetic models,
which frequently impose fibrosis patterns without
considering their anatomical context. Moreover, CV may
be a more sensitive indicator of arrhythmogenic substrate
than fibrosis alone.
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Figure 4. Variation in modes, showing +2 standard deviations from the mean. Left: shape mode 3, with distance from
mean shape (light grey); right: appearance mode 8, with conduction velocity distributions depicted on mean shape. MV:

mitral valve.
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Figure 5. Variation in first 4 Statistical Shape and Appearance Model modes, showing +2 standard deviations from the

mean. MV: mitral valve.
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